News
People
Research
Publications
Talks
Contact
Light
Dark
Automatic
2
Differentiable Histogram Loss Functions for Intensity-based Image-to-Image Translation
We introduce the HueNet - a novel deep learning framework for a differentiable construction of intensity (1D) and joint (2D) histograms …
Prof. Tammy Riklin Raviv
DOI
The Cell Tracking Challenge: 10 years of objective benchmarking
The Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking …
Martin Maška
,
Vladimír Ulman
,
Pablo Delgado-Rodriguez
,
Estibaliz Gómez-de-Mariscal
,
Tereza Nečasová
,
Fidel A. Guerrero Peña
,
Tsang Ing Ren
,
Elliot M. Meyerowitz
,
Tim Scherr
,
Katharina Löffler
,
Ralf Mikut
,
Tianqi Guo
,
Yin Wang
,
Jan P. Allebach
,
Rina Bao
,
Noor M. Al-Shakarji
,
Gani Rahmon
,
Imad Eddine Toubal
,
Kannappan Palaniappan
,
Filip Lux
,
Petr Matula
,
Ko Sugawara
,
Klas E. G. Magnusson
,
Layton Aho
,
Andrew R. Cohen
,
Assaf Arbelle
,
Tal Ben-Haim
,
Tammy Riklin Raviv
,
Fabian Isensee
,
Paul F. Jäger
,
Klaus H. Maier-Hein
,
Yanming Zhu
,
Cristina Ederra
,
Ainhoa Urbiola
,
Erik Meijering
,
Alexandre Cunha
,
Arrate Muñoz-Barrutia
,
Michal Kozubek
,
Carlos Ortiz-de-Solórzano
PDF
Cite
DOI
Differentiable Histogram Loss Functions for Intensity-based Image-to-Image Translation
We introduce the HueNet - a novel deep learning framework for a differentiable construction of intensity (1D) and joint (2D) histograms …
Mor Avi-Aharon
,
Assaf Arbelle
,
Tammy Riklin Raviv
Cite
DOI
Dual-Task ConvLSTM-UNet for Instance Segmentation of Weakly Annotated Microscopy Videos
Convolutional Neural Networks (CNNs) are considered state of the art segmentation methods for biomedical images in general and …
Assaf Arbelle
,
Shaked Cohen
,
Tammy Riklin Raviv
Cite
DOI
Stochastic weight pruning and the role of regularization in shaping network structure
The pressing need to reduce the capacity of deep neural networks has stimulated the development of network dilution methods and their …
Yael Ziv
,
Jacob Goldberger
,
Tammy Riklin Raviv
PDF
Cite
DOI
An atlas of classifiers—a machine learning paradigm for brain MRI segmentation
We present the Atlas of Classifiers (AoC)—a conceptually novel framework for brain MRI segmentation. The AoC is a spatial map of …
Shiri Gordon
,
Boris Kodner
,
Tal Goldfryd
,
Michael Sidorov
,
Jacob Goldberger
,
Tammy Riklin Raviv
PDF
Cite
DOI
Subsampled brain MRI reconstruction by generative adversarial neural networks
A main challenge in magnetic resonance imaging (MRI) is speeding up scan time. Beyond improving patient experience and reducing …
Roy Shaul
,
Itamar David
,
Ohad Shitrit
,
Tammy Riklin Raviv
PDF
Cite
DOI
Miswiring of Frontostriatal Projections in Schizophrenia
We investigated brain wiring in chronic schizophrenia and healthy controls in frontostriatal circuits using diffusion magnetic …
James J Levitt
,
Paul G Nestor
,
Marek Kubicki
,
Amanda E Lyall
,
Fan Zhang
,
Tammy Riklin Raviv
,
Lauren J O′Donnell
,
Robert W McCarley
,
Martha E Shenton
,
Yogesh Rathi
PDF
Cite
DOI
Slow blood-to-brain transport underlies enduring barrier dysfunction in American football players
Repetitive mild traumatic brain injury in American football players has garnered increasing public attention following reports of …
Ronel Veksler
,
Udi Vazana
,
Yonatan Serlin
,
Ofer Prager
,
Jonathan Ofer
,
Nofar Shemen
,
Andrew M Fisher
,
Olga Minaeva
,
Ning Hua
,
Rotem Saar-Ashkenazy
,
Itay Benou
,
Tammy Riklin Raviv
,
Ellen Parker
,
Griffin Mumby
,
Lyna Kamintsky
,
Steven Beyea
,
Chris V Bowen
,
Ilan Shelef
,
Eoin O’Keeffe
,
Matthew Campbell
,
Daniela Kaufer
,
Lee E Goldstein
,
Alon Friedman
PDF
Cite
DOI
From a deep learning model back to the brain—Identifying regional predictors and their relation to aging
We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous …
Gidon Levakov
,
Gideon Rosenthal
,
Ilan Shelef
,
Tammy Riklin Raviv
,
Galia Avidan
PDF
Cite
DOI
»
Cite
×